УДК 514.764.2

С. Е. Степанов, И. И. Цыганок

(Финансовый университет при Правительстве РФ, г. Москва)

Многообразие, которое имеет равное нулю первое число Бетти и допускает конформное некиллинговое векторное поле

Доказано, что односвязное полное риманово многообразие M изометрично евклидовой сфере, если многообразие допускает замкнутое конформно киллинговое векторное поле X такое, что для скалярной кривизны s ее производная Ли $L_x s=0$. Доказано также, что замкнутое римановое многообразие с равным нулю первым числом Бетти и конформно киллинговым векторным полем X конформно диффеоморфно евклидовой сфере. Если при этом для скалярной кривизны s ее производная Ли $L_x s=0$, то многообразие — изометрично евклидовой сфере.

Ключевые слова: замкнутое риманово многообразие, конформно киллинговое векторное поле, первое число Бетти.

1. Введение и результаты

На n-мерном ($n \ge 2$) многообразии M с метрикой g векторное поле X называется κ информно κ иллинговым, если по отношению κ X производная Ли $L_x g = (2/n) {\rm div} \ X \cdot g$. В случае, когда $L_x g = 0$, векторное поле X называется κ иллинговым. Конформно κ киллинговое векторное поле κ конце прошлого и начале этого века было объектом пристального внимания κ с интенсивным изучением групп инфинитезимальных конформных преобразований (псевдо)римановых многообразий [1].

Одним из главных результатов этих исследований стала теорема о том, что компактное риманово многообразие M, допускающее конформно киллинговое векторное поле X, которое нельзя конформным преобразованием метрики g превратить в киллинговое, конформно диффеоморфно евклидовой сфере [1, c. 269]. Были доказаны также утверждения, исключающие требование подобного конформного преобразования метрики (см.: [2; 3 и др.]). Например, известно утверждение [2] о том, что компактное риманово многообразие M с конечной фундаментальной группой $\pi_1(M)$, допускающее замкнутое конформно киллинговое векторное поле, не являющее киллинговым, диффеоморфно евклидовой сфере. Мы можем уточнить этот результат, сформулировав

Предложение. Односвязное полное риманово многообразие M, допускающее замкнутое конформно киллинговое векторное поле X такое, что $L_{x}s=0$ для скалярной кривизны s, изометрично евклидовой сфере.

Основным же результатом статьи будет следующая

Теорема. Если на замкнутом римановом многообразии M с равным нулю первым числом Бетти существует конформно киллинговое векторное поле X, то многообразие конформно диффеоморфно евклидовой сфере. Если при этом для скалярной кривизны s ее производная \mathcal{I} и $L_x s = 0$, то многообразие — изометрично евклидовой сфере.

2. Доказательства утверждений

Докажем предложение. Предварительно сделаем два замечания. Во-первых, известно [4, с. 189; 281], что для односвязного риманова многообразия M первое число Бетти $b_i(M) = 0$, а потому каждое замкнутое векторное поле на таком M является градиентным; в частности, таким будет и замкнутое конформно киллинговое векторное поле. Более того, конформно киллинговое векторное поле на подобном многообразии не

может быть киллинговым, ибо в этом случае оно становится ковариантно постоянным, чего не может быть на многообразии с $b_{\scriptscriptstyle 1}(M)=0$. Во-вторых, полное риманово многообразие M с градиентным конформно киллинговым векторным полем X, удовлетворяющим условию $L_{\scriptscriptstyle X}s=0$ для скалярной кривизны s , является изометричным евклидовой сфере (см. [5, лемма 4.10]). В результате будет справедливо сформулированное выше предложение.

Перейдем к доказательству теоремы. Рассмотрим n-мерное $(n \ge 2)$ замкнутое, т.е. компактное без границы, многообразие M с римановой метрикой g. Обозначим через $C^{\infty}M$ пространство C^{∞} -функций, через $\mathfrak{I}(M):=C^{\infty}TM$ пространство гладких векторных полей, а через $\Omega^{p}(M):=C^{\infty}\Lambda^{p}M$ — пространство дифференциальных p-форм на M; в частности, $\Omega^{1}(M):=C^{\infty}T^{*}M$. Введем в рассмотрение операторы Лапласа — Бельтрами $\Delta:\Omega^{p}(M)\to\Omega^{p}(M)$, внешнего дифференцирования $d:\Omega^{p}(M)\to\Omega^{p+1}(M)$ и ему формально сопряженный относительно глобального скалярного произведения $\langle \omega,\omega'\rangle=\int_{M}^{\infty}\frac{1}{r!}\,g(\omega,\omega')dv$ для $\omega,\omega'\in\Omega^{1}(M)$ оператор кодифференцирования $\delta:\Omega^{p+1}(M)\to\Omega^{p}(M)$.

А. Лихнерович ввел в рассмотрение [6] дифференциальный оператор $\Box X = \Delta X + \left(1 - \frac{2}{n}\right)d \ \delta X - 2Q \ X$ для тензора Риччи Ric(X,Y) = g(QX,Y), произвольных $X, \ Y \in \mathfrak{I}(M)$ и доказал, что $\langle \Box X, X \rangle \geq 0$, причем равенство возможно только для конформно киллинговых векторных полей. Тогда киллинговое векторное поле X определяется условием $X \in \text{Ker } \Box \cap \text{Ker } \delta$.

Обозначим через $\sigma_{\xi}(\square)$ главный символ [7, с. 627—628] оператора Лихнеровича \square для произвольного $\xi \in T_x^*M$. Можно доказать, что $\sigma_{\xi}(\square)$ при $n \ge 2$ является инъективным и что совпадают размерности пространств при отображении символа

 $\sigma_{\xi}(\square)$: $T_xM \to T_xM$. Поэтому из инъективности символа $\sigma_{\xi}(\square)$ следует, что он — изоморфизм и, следовательно, при $n \ge 2$ оператор \square является эллиптическим [7, с. 628—630]. Для эллиптического оператора \square его ядро Кег \square на замкнутом римановом многообразии M будет конечномерным векторным пространством [7, с. 632].

На замкнутом римановом многообразии M справедливы ортогональные относительно глобального скалярного произведения разложения [8, с. 161]

$$\Omega^{1}(M) = \operatorname{Im} d \oplus \operatorname{Im} \delta \oplus \operatorname{Ker} \Delta,$$

$$\operatorname{Ker} \delta = \operatorname{Im} \delta \oplus \operatorname{Ker} \Delta, \operatorname{Ker} d = \operatorname{Im} d \oplus \operatorname{Ker} \Delta,$$

первое из которых носит название разложения Ходжа-де Рама. Известно, что $b_i(M)=\dim_{\mathbf{R}} \operatorname{Ker} \Delta$ — первое число Бетти многообразия M. Для $b_i(M)=0$ из приведенных равенств последует $\Omega^1(M)=\operatorname{Im} d \oplus \operatorname{Im} \delta$, $\operatorname{Ker} \delta = \operatorname{Im} \delta$, $\operatorname{Ker} d = \operatorname{Im} d$. В этом случае будет справедливым ортогональное разложение

$$\operatorname{Ker} \Box = (\operatorname{Ker} \Box \cap \operatorname{Im} \delta) \oplus (\operatorname{Ker} \Box \cap \operatorname{Im} d),$$

где пространство Ker $\square \cap$ Im δ состоит из 1-форм, двойственных коточным киллинговым векторным полям, а пространство Ker $\square \cap$ Im d состоит из 1-форм вида $\omega = \operatorname{grad} f$ для некоторой функции $f \in C^\infty M$, которая удовлетворяет уравнениям

$$\nabla \nabla f = -(1/n)\Delta f \cdot g . \tag{*}$$

Имеем Кег $\square \neq$ Кег $\square \cap$ Іт δ , поскольку в противном случае каждое конформно киллинговое векторное поле X является ковариантно постоянным, а следовательно, и гармоническим, что противоречит условию $b_{\scriptscriptstyle 1}(M)\!=\!0$. Поэтому на таком M существует непостоянная функция $f\in C^\infty M$, удовлетворяющая уравнениям (*). Это означает [9], что многообразие (M,g) конформно диффеоморфно сфере \mathbf{S}^n евклидова пространства \mathbf{R}^{n+1} . Если при этом производная Ли $L_{\mathrm{grad}_f} s=0$, то M будет изометричным сфере \mathbf{S}^n [5, лемма 4.10].

Список литературы

- 1. Rademacher H.-B., Kuhnel W. Conformal transformations of pseudo-Riemannian manifolds // Recent developments in pseudo-Riemannian geometry / eds D.V. Alekseevsky, H. Braum. Zürich, 2008. P. 261—298.
- 2. Suyama Y., Tsukamoto Y. Riemannian manifolds admitting a certain conformal transformation group // J. Differential Geometry. 1971. Vol. 5. P. 415—426.
- 3. Tanno S., Weber W. C. Closed conformal vector fields // J. Differential Geometry. 1969. Vol. 3. P. 361—366.
- 4. *Шутц Б*. Геометрические методы математической физики. М., 1984.
- 5. *Yano K., Obata M.* Conformal changes of Riemannian metrics // J. Differential Geometry. 1970. Vol. 4. P. 53—72.
- 6. *Lichnerowicz A*. Transformations infinitesimals conformes de certaines variétés riemanniennes compactes // C. R. Acad. Sci. Paris, 1955. Vol. 241. P. 726—729.
 - 7. Бессе А. Многообразия Эйнштейна. М., 1990.
- 8. *Новиков С. П.* Топология // Современные проблемы математики. Фундаментальные направления (Итоги науки и техники ВИНИТИ АН СССР). М., 1986. Т. 12. С. 5—252.
- 9. Tashiro Y. Complete Riemannian manifolds and some vector fields, Transactions of the American Mathematical Society. 1965. Vol. 117. P. 251—275.

S. Stepanov, I. Tsyganok

Riemannian manifold which has zero as the first betti number and admits a conformal non-killing vector field

We prove two propositions. Firstly, assume that the first Betti number $b_1(M)$ of a closed Riemannian manifold M is equal to zero and M admits a conformal Killing vector field X. Then M is conformally diffeomorphic with a Euclidean sphere. If in addition, the Lie derivative with respect to X of the scalar curvature of M is equal to zero then M is isometric with a Euclidean sphere. Secondary, assume that M is a simply connected complete Riemannian manifold and M admits a closed conformal Killing vector field such that the Lie derivative with respect to X of the scalar curvature of M is equal to zero. Then M is isometric with a Euclidean sphere.